The processes which existed in intact chain of pond systems at the time of Euro settlement, and those described by Peter Andrews in Back from the Brink are evident in this roadside gutter.

In this case, a ‘leaky weir’ formed (spilt asphalt from roadworks), slowing the water enough for sediment to drop out. This provided a bed for a wetland (weeds and grasses) to establish in the channel, which in turn captured more sediment, growing larger wetlands and so on.

The moisture and organic matter trapped by the wetland create ideal composting conditions and beautiful black soil begins to develop (Good enough for these two worms to decide to start a family)

When the flow is obstructed by the vegetation in the ‘wetlands’, it’s forced from the channel onto the floodplain (road). As the flow spreads and slows on the rough, well vegetated surface (blue metal chunks), bulk biomass and fertility from the wetlands is deposited. Here, the biomass has accumulated on contour, similar to this other post.


Copyright Cam Wilson, Earth Integral 2012

There are many different ways that Peter and Kate Marshall have turned degraded sites around on ‘Sunningdale’, setting landscape rehydration and repair processes into action.

One of the methods was this series of vegetated earth banks, which are situated in a second order gully, higher in the catchment. The photos tell the story.

Fabric protecting the 8 newly constructed earth banks in 2004. Sedges were pinned on top of the material, the rhizomes binding the banks together

In 2012, the vegetation is well established and the banks have remained stable, in a fashion very similar to those in an intact chain of ponds. The ponds are beginning to shrink as the sedge and rush marches into the water, providing valuable wetland habitat as they do

Here, sediment and algae is caught by the sedge covered banks during a small flow event, providing material and nutrients to assist with further vertical growth of the banks

In this photo, the shovel has cut down to the fabric which remains below the surface, showing the material which has built up. Sediment caught and trapped by the tussocks, rhizomes and root mats of the sedge, as well as their bulk organic material, help the banks to grow in height

As a result of these simple earthworks, the ponds and wetland plants themselves provide valuable wetland habitat, whilst also improving the drought resilience of the landscape through the lateral hydration of the surrounding floodplain In time, as the banks continue to aggrade, this will provide further benefits by returning flood flows to the floodplain surface.

If anyone is interested in spending some time working on the Marshall’s property, feel free to contact us and we can put you in touch.

Or, if you’re interested in getting these processes happening once again on your land, contact us to find out about our design, consultancy and implementation services.

Disclaimer: Where water flow is concerned there are substantial risks involved. While the information and images we publish are formulated in good faith, with the intention of raising awareness of landscape rehydration processes, the contents do not take into account all the social, environmental and regulatory factors which need to be considered before putting that information into practice.  Accordingly, no person should rely on anything contained within as a substitute for specific professional advice.

Article and Images © Cam Wilson, Earth Integral, 2012

When building natural capital (including beef or wool), increased potosynthesis is the goal of any land manager. Available moisture is, of course, a key factor.

At the time Europeans settled in South-Eastern Australia, many broad upland valleys were described as chains of ponds or swampy meadows. There are a few of these well hydrated, very productive systems, effectively drought proof systems still remaining (for example the Hazell’s property), but the majority have been severely eroded and subsequently drained (click on the following for an outline of the degradation process, in diagrams or the scientific literature).

At Tarwyn Park, Peter Andrews demonstrated the potential primary production benefits from reinstating the original floodplain processes and rehydrating the surrounding landscape.

One way of doing so is by raising the alluvial water table through lateral infiltration (as described in the post Floodplain water storage). The speed this occurs depends on the soil type, but if it’s going to happen any time soon the main driving factor is a fairly constant supply of water from the catchment above.

High in the landscape, inflow from the catchment above is generally only available for a short period of time. Where this is the case, the effectiveness of relying solely on a lateral hydration approach is limited, as a severely drained landscape will take a considerable time (maybe several lifetimes) before the water table is raised high enough to enhance plant growth on the floodplain.

Where short sharp bursts of runoff are available, the fastest return can be achieved by reinstating the old flood flows. Water spreads out across the landscape once more, soaking into the floodplain for the extended use by the plants and soil life. Sediments are also deposited, the process which has made floodplains the rich production zones they are worldwide. Basically, it’s recommissioning nature’s flood fertigation system.

In an intact landscape, there are predictable locations where floodwater is more likely to top the banks, just as there are locations where it’s likely to re-enter:

On a macro-scale, floodplain flow patterns are often closely related to the ridges intruding into the floodplain (Tane, 1999)

Where multiple ponds exist between the major landscape features, braided flood flows (red arrows) generally exit the downstream half and enter the upstream half of a pond (P Hazell, personal conversation)

When siting structures, an understanding of these processes is the key to getting the most bang for your buck. A structure in an inappropriate location may get the water up onto the floodplain, but it will soon spill back into the gully, maybe even worsening the existing erosion. In contrast, a well positioned structure results in the flow heading away from the watercourse, spreading into a more passive flow and hydrating the floodplain surface before re-entering the stream sometimes hundreds of metres downstream.

On Gunningrah, Charlie and Anne Maslin have sited their structures as well as anyone I’ve seen with this goal in mind. Having taken inspiration from Peter Andrews on ‘Australian Story’ and attending a Natural Sequence Farming field day, Charlie has since constructed around 40 leaky weirs on Gunningrah (For more information about the Maslin’s farming prowess, see their profile in the Soils for life case studies).

There are a range of positive results which the Maslins have achieved depending on the landscape position of the works, but the following couple of examples are a good demonstration of utilising the original flooding processes mentioned above.

(Note: To avoid hefty fines, it’s important to adhere to local watercourse regulations. In many places there are few restrictions on ‘dam walls’ within first and second order streams other than the harvestable rights of the property)

Poplar site

Flow had become contained within the incised channel, taking shortest path it could towards the ocean. The only moisture available to the surrounding floodplain was what fell from the sky

An earth wall structure intercepts the flow in the channel, reconnecting it with the floodplain. The flow re-enters more than 500m downstream, with the potential to irrigate about 6 ha of pasture.

The poplars indicate the path of the incised channel, the flow now spreads out across the floodplain

Looking upstream at the same structure, the flow spreads significantly across the paddock.

Debris in the middle of the paddock, around 50m from the main channel.

Hayshed site

Flow path before the works….

….. and afterwards, back to how it once was

An aerial view of the flow before the works were completed, contained within the incised channel

An earth wall intercepts the channelised flow, spilling onto the surrounding floodplain. For an idea of the extra water harvesting potential which results, 0.25 Megalitre is stored for every 25mm of water that’s accepted by the landscape per hectare. A healthy topsoil can receive far more than that.

In case you’re still wondering “How can water flow away from the main watercourse? Isn’t that always the lowest point?” It is in a young landscape, but Australia’s pretty geriatric as far as watersheds go.

In Back from the brink, Peter Andrews talks about water flowing on the high ground (of the floodplain). This phenomena was observed by plenty of early explorers and it’s also well accepted in the scientific literature. In short, when a watercourse spills its banks, the water slows down, depositing the heaviest sediment. In time, a natural levee is built as seen below.

If you’re interested in getting these processes happening once again on your land, contact us to find out about our design, consultancy and implementation services.

Please visit and ‘Like’ our Facebook page to hear about future posts.

Disclaimer: Where water flow is concerned there are substantial risks involved. While the information and images we publish are formulated in good faith, with the intention of raising awareness of landscape rehydration processes, the contents do not take into account all the social, environmental and regulatory factors which need to be considered before putting that information into practice.  Accordingly, no person should rely on anything contained within as a substitute for specific professional advice.

Article and Images © Cam Wilson, Earth Integral, 2012


Tane, H. 1999. Catchment Habitats and Landscape Ecosystems. Centre for Catchment Ecology, 1: 1-12

Peter Hazell showing the intact chain of ponds, on the property he is stewarding near Braidwood.

“One thing I noted was the striking difference in the primary productivity between the swampy meadows and the incised equivalent: it was chalk and cheese.” That’s Peter Hazell’s take on the first time he laid eyes on the property he and his wife Donna are now managing.

At the time, back in 2001, as a seasoned NRM scientist, Peter was conducting a land cover classification for the Landcare network. Using satellite imagery, different land cover types would show up as different patterns in the spectral analysis, and Peter would then head out into the field to ground truth it.

While doing so, there were areas in the upper catchment that were standing out as very vibrant so he thought he’d better take a look. It turned out that every place that was showing up as the richest land cover class in terms of primary production were the intact swampy meadows and chain of pond systems. In contrast, the drained, incised systems showed up as rather dull, with low production.

As well as stewarding one of the rare intact chain of pond systems that remains, Peter’s contribution to protecting and restoring these valuable environmental assets has included working closely with Peter Andrews while working as an NRM Facilitator with the Federal Department of Environment Water Heritage and the Arts, playing an instrumental role in getting the Natural Sequence Farming demonstration to happen at Mulloon Creek Natural Farms, involvement in the Upper Shoalhaven Natural Sequence Association, and potentially more research down the track.

Meanwhile, in 2003, Donna published what remains one of the only peer reviewed papers looking at the ecology of chain of pond systems, in particular the benefits of intact systems to frogs within an agricultural landscape. It’s a great paper and in my opinion remains one of the clearest overviews of the post-Euro settlement stream degradation process (you can access a copy here).

As a great example of the landscape hydration, leaky weirs, wetland habitat and natural erosion control we’re aiming to reinstate, I’ll share more about their property in future. This will include some interesting saline groundwater results, the way water pulses through the floodplain sediments, and some very simple small-scale erosion control which can be done, like Peter and Donna have, in your spare time with a couple of kids in tow.

When the results become public, I’ll also share more about the research which Nathan Weber has conducted on the Hazell’s property as part of his PhD on the effects of Natural Sequence Farming on upper catchment floodplain processes.

Article and Diagrams © Cam Wilson, Earth Integral, 2012

When erosion control work is carried out with floodplain rehydration in mind, a more sustained creek flow at the base of the property is one of the most common outcomes. Yet, of all the water harvesting and hydration concepts I’ve discussed with people, this remains the one which draws the most skepticism.

The following diagrams illustrate the way this process works:


This is a fairly typical erosion gully in the Southern Tablelands. The major erosion happened decades ago, therefore the floor of the gully has mostly revegetated and stabilised. However, the alluvial aquifer remains drained down to approximately the base of the gully.


With the gully incised, in many locations even the largest runoff events remain contained within the channel. For the short period the creek is running high, there is some lateral infiltration into the alluvial aquifer, but it’s often a fairly insignificant amount.


Depending on the order of the stream, porous structures (or leaky weirs) of varying heights and types can be constructed (ie vegetated earth-banks, rock gabions, log sills, fascines, brush mattresses etc).


Whenever there is sufficient flow from above, the structure causes a pool to form. As well as enabling riparian and wetland vegetation to establish with the associated bed stability and habitat benefits, the raised water level in the pool encourages water to laterally rehydrate the surrounding floodplain.


When flood flows occur, depending on the height of the structure, access to the floodplain is now available once again. With the water spread in a thin sheet across the land, it not only reduces the energy and erosive potential within the channel, but also gives more opportunity for the alluvial aquifer to recharge, with infiltration from above.


In time, depending largely on how porous the floodplain sediment is, the alluvial aquifer will be raised. (The closer to the surface the water table, the more important the flooding process becomes, due to the freshwater lens it creates over the heavier saline groundwater.)


Due to porous nature of the structures and floodplain sediments, during extended periods without flow coming into the system, the pools can begin to drop. At such time, water stored in the floodplain begins to feed back into the creek, providing an extended base flow, potentially creating a perennial flow.

At the same time, depending on how high the water table has been raised, floodplain vegetation will benefit from moisture available through capillary action. Deep rooted perennial grasses and riparian trees such as Casuarina and Populus will benefit sooner of course, and provide construction material for further channel repair.

Disclaimer: Where water flow is concerned there are substantial risks involved. While the information and images we publish are formulated in good faith, with the intention of raising awareness of landscape rehydration processes, the contents do not take into account all the social, environmental and regulatory factors which need to be considered before putting that information into practice.  Accordingly, no person should rely on anything contained within as a substitute for specific professional advice.

Article and Images © Cam Wilson, Earth Integral, 2012

I don’t pretend in any way to have originated the concepts that I design and implement in the landscape, nor what I share on this blog. No one can really, as the intention is to emulate natural processes to the best of our understanding.

There are however a number of pioneers who can lay a bit more claim than most. Those pioneers I refer to are the ones who have stepped outside of the entrenched European farming paradigm and realised that the tried and tested patterns in Nature provide a solid template for design and practice. They’ve then pointed them out to the rest of us, and in doing so, have turned many of our paradigms upside down and put a fire in our belly for helping landscape rehabilitation to take place.

Peter Andrews (Source: Australian Story, ABC)

Peter Andrews is one of those pioneers. Since he shot to fame with the original Australian Story episode in 2005, he has arguably opened the eyes of more Australian mainstream farmers to the possibilities that natural processes present than anyone else. That episode, in which his efforts to restore a degraded system back to a rehydrated, functioning chain of ponds landscape, captured the imagination of both city and country folk alike, and proved to be the most popular episode ever.

In 2009 there was a follow up double episode called Right as Rain which can be viewed on the abc website (Click on the following links to see Part 1 and Part 2).

It wasn’t long after those episodes that I went to Mulloon Creek for the first time, along with a couple of hundred others for the open day of the Natural Sequence Farming demonstration. Pretty soon after that, that my family and I were living at Mulloon where I maintained the creek work for a couple of years. During that time, I’ve been lucky enough to spend a fair bit of time with Peter and whilst most of what he’s shared with me can be found in the pages of Back from the Brink and Beyond the Brink (essential reading of course), he has managed to put me on the spot plenty of times, testing and extending my thinking and understanding which I very much appreciate (although slightly challenging when it’s up on stage in front of 150 or so people).

The point of our blog and our business is that resting on the shoulders of giants (whose work we will be profiling and exposing on a regular basis) we hope to make these ideas even more accessible and achievable. We hope to remove the blocks that have prevented all but the most courageous pioneering types from undertaking this sort of work, helping to point out the pathway through the design and implementation process, as well as the wide room for movement within the current regulation framework (there is a common perception that everything Peter has suggested is illegal, but it just isn’t the case).

I see huge value from the position of landscape health in what Peter Andrews and other pioneers have shared and contributed. One of my hopes is to further clarify some of their ideas on this website through diagrams, writing and sharing case studies of those who have been inspired enough by his work to have a go on their land.

The purpose of our business is to help people to take that next step. Through our design, consultancy, implementation and education services we hope to place the tools in peoples hands for carrying out this incredibly important landscape rehabilitation work. For the health of the Aussie landscape, we hope you’ll be one of them.

We hope that on our journey we can make a contribution that is even a small portion of what Peter has done over the years in his tireless efforts of raising awareness about the processes in the Australian landscape.

On Jan 26th 2011 Peter Andrews was awarded Australia’s highest public award, the Order of Australia Medal. (Source:

The difference a farm fence can make between soils…

When you are trying to decide which method of soil improvement to take, sometimes it seems like there are as many different approaches as there are bacteria in a teaspoon of healthy soil.

This isn’t necessarily a huge problem when you’re talking about a suburban backyard scale. It’s easy in that situation to: do some aerating with a broad fork; balance the Calcium:Magnesium ratio and whatever trace minerals your soil test says are missing; build and add compost and worm castings; brew up some compost tea; add some seaweed extract, a handful of basalt rock dust, a bit of Charlie carp and the humified eyeballs of some rare mountain lion to top it off.

But what about the farmer who is planting 1000 Ha of Wheat and Rye so the armchair permaculturalists of this world can munch their organic sourdough toast while checking the next important forum posting written by someone else sitting at a computer at 10.30am. That farmer would quickly go broke if they did all the things a backyard gardener can do. So how to decide?


The farmer’s goal should be to turn subsoil into topsoil. That is, to be able to walk anywhere on his or her land, sink a post-hole shovel and find something resembling chocolate cake. If you’ve got chocolate cake, you’ve got good crops, whether it’s pasture, grain, fruit or veg. CSIRO scientists still say it’s impossible but I’ve seen it happen under the care of a number of our country’s best farmers (Col Seis and Ron Smith to name a couple) to know that it’s very achievable (and we’re talking years, not centuries, as you may have been led to believe).

What’s the secret? It’s plants and microbes working together. 

It seems that Nature got sick of applying bags of NPK to all the different plants on Earth and equally sick of spraying out molasses and fish hydrolysate to feed the bacteria and fungi in the soil and decided to read Mollison’s Intro to Permaculture. Principle 1: Relative Location made a bit of sense, so she conducted a Needs, Functions & Products Analysis, and in doing so recognised that plants produced more than enough sugars through photosynthesis, but needed nutrients to do so, and meanwhile bacteria and fungi were easily the most efficient critters on earth at grabbing hold of nutrient, but had a hard time finding carbs to fuel their bodies. It was a match made in heaven. The plants were put next to the microbes and have been symbiotically trading root exudates (sugars) for nutrients ever since.

What does this have to do with building soil? Those sugars passing from the plant to the soil critters are liquid carbon. Let’s take one of the exudate recipients, mycorrhyzal fungi, as an example (they attach themselves to plant roots in a symbiotic relationship). They use these sugars to produce glomalin, a protective coating for their hyphae, which is sloughed off into the soil when the hyphae dies. The glomalin is a very persistent carbon compound that ‘sticks around’ in the soil for a long time (it’s one of the main things that holds soil aggregates together).

What encourages hyphae production? You need to feed them for as much of the year as you can, and this is only possible when a plant is actively photosynthesising. That is: maximise root exudates by maximising yearly photosynthesis.

This means:

  • In pasture, an appropriate disturbance/recovery regime to maximise the growth potential of pasture plants. (See Holistic Grazing Management for further info.)
  • Different plants thrive at different times of year. A mix of C3 (cool season) and C4 (heat tolerant) plants will ensure you can take advantage of moisture and have something green and growing throughout the year (See Carbon Grazing by Allan Lauder for more info on this topic)
  • Winter cropping C3 plants (ie. wheat, oats, rye) into dormant C4 perennial pastures or summer cropping (millet, sorghum, corn) into dormant C3 pasture (search for Pasture Cropping, Col Seis)
  • A winter active groundcover under dormant fruit trees.

Using a combination of time-controlled grazing and pasture cropping, Col Seis has managed to go from the soil shown on the right of the image at top (this sample is from over the fence, 15m into his brother’s conventional agricultural paddock, who still farms the way Col used to) to the soil on the left in 15 years. (He could do it in 10 now he reckons.)

In doing so, his soil test in relation to what existed before is:

So let’s consider the management interventions related to the chemical, biological and physical aspects of Col’s soil that have lead to these results.


The changes seen in the table above to the chemical nature of Col’s soil have been achieved without the addition of single bag of super-phosphate, nor a tonne of lime, nor any trace minerals, nor any sizable amount of compost, in 30 years. (He does continue to put out a small amount of DAP when sowing a grain crop, but has had good success with worm juice this year.) Soil nutrient amendments haven’t been the driver.


Col did put compost teas out for a little while, but then thought, “What the hell am I doing this for? Why am I adding foreign microbes from a compost pile when there is already a huge diversity suited to the conditions in the existing topsoil”. He then changed to feeding the existing microbes with molasses and fish emulsion, until he once again thought, “What the hell am I doing this for? Why am I putting food out when the plants create the best microbial food there is”. Biological stimulants haven’t been the driver.


A small aerating affect is achieved with the tines on the direct seeder that Col uses for pasture cropping, but they only impact down to about 70mm which doesn’t explain the dramatic increase in carbon down to 500mm. Soil cultivation hasn’t been the driver.

All this has been driven by the plants within Col’s pasture and cropping system. Here’s a brief summary of what they’ve done:


  • As stated above, Col aims to maximise the photosynthesis potential on his property, and hence maximises root exudates; the fuel for the life in the soil. (Winter cereals such as oats are one of the highest producers of root exudates and really give the native pasture and soil a kick.)
  • The pulse of disturbance created by time-controlled grazing, followed by a period of rest until plants have fully recovered (that is, the perennials have replaced root energy reserves) offers plenty more food to the soil food web in the form of root exudates, decaying root systems, litter, manure and urine.


  • Soil microbes fuelled by root exudates, in particular mycorrhyzal fungi, are able to access nutrients from the subsoil that were previously tied up in a plant unavailable form. They can then transport these nutrients through their network of hyphae.
  • The test results above, which were taken down to 500mm, show not only an increase in Col’s Available nutrients, but Total nutrients have also increased significantly, suggesting the breakdown of parent rock material by the soil life.
  • Increased carbon levels also result in a huge increase in the water and nutrient holding capacity of the soil.


The growing soil carbon levels fuelled by root exudates, along with the carbon pathways created by decaying root systems, as well as the improved structure provided by bacteria glueing their butts to the particles, the fungi wrapping themselves around everyone else and the worms and other larger critters creating tunnels through the soil as they relentlessly munch-on, all help to improve the aeration, root penetration, nutrient holding capacity, nutrient availability, water infiltration and retention etc.

So does that mean that the soil improvement methods handed to us by the various soil legends that have come before (ie. P.A. Yeomans who was physical-centric, William Albrecht who was chemical-centric or Elaine Ingham who is biological-centric) are unnecessary?

Not at all.

With the right management practices, plants can do the job, but the methods that folk such as these gave to us can help to speed things along. The key thought when you are deciding which one(s) you want to spend your money on, is to keep in mind what the goal is: for plants to maximise photosynthesis and drive the system.

Therefore the practice that you choose should address the major limiting factor that restricts photosynthesis. For example:

Physical: On an area of pasture that we are developing at the moment, compaction from past practices is the major limiting factor. It’s preventing decent root penetration as well as resulting in water sheeting off. So, in conjunction with time-controlled grazing, we are implementing an initial program with a Keyline Plow using Keyline Pattern Cultivation. Good grazing and pasture cropping once every 3-4 years should maintain it from there.

Chemical: On the property of a friend of mine, he has a heavy sodic layer down about 170mm which is inhibiting root penetration. In this case, he has had an expert in the Albrecht method of soil balancing give him some advice. He has been injecting liquid calcium down to the sodic layer, which has changed the structure of the soil and resulted in root penetration a further 30-40cm in 2 years. The plants can now start to drive the system.

Biological: As far as adding biology goes, tests have recently been done by a leading University on a number of different compost teas and microbial jungle juices. Basically the results showed that if you had a bit of decent topsoil already, the compost tea made no difference. If your soil is dead, for example it might have been plowed non stop for 100 years, or perhaps there’s been excessive chemicals used on the land, then it could be worth putting some critters on as an initial inoculation.

This is just my opinion, but rather than adding foreign microbes from a bottle or even a thermophilic compost pile (which is an incredibly different environment to field conditions if you think about it), why not get hold of some soil from under a few of the best pastures in your region. Perhaps grab some from under a healthy bit of native grassland that you know of too. In my opinion they could well be better suited to your conditions.

Here’s a good story related to this topic. John Weatherstone is an inspirational farmer who has planted many thousands of trees to compliment his grazing enterprise. He had a stand of Casuarinas that were yellow and weren’t doing well. John W had a long discussion with John Field from the Australian National University about whether it could be the clay or the salt below or etc. In the end John F said, why don’t you go and grab some duff (leaf litter and topsoil) from under a healthy old stand of Casuarinas and put it around their base. John W did this to half of them and they turned green and healthy within a month. What a difference the right biology can make. (The other half began to turn green too, marching progressively away from the inoculated stand due to the root grafting that takes place, as well through the fungi which connect plant ecosystems.)

So, here’s the short version:

  1. Aim for plants to drive the soil system by maximising photosynthesis.
  2. If you’re keen to spend money to speed things up, carefully consider what the major limiting factor is, and base your interventions around this.