Archive

Tag Archives: Peter Andrews

The following paddock layout offers a useful way of integrating trees into a grazing enterprise on sloping country. The aim of this approach is to minimise the impacts on production during the establishment phase, while offering significant benefits to both landscape and livestock once stock are reintroduced.

PADDOCK LAYOUT

Although shown here as a grid for illustration purposes, in a best case scenario the pattern is applied on a keyline cultivation layout, which offers extra water distribution benefits to the establishing trees. This particular example represents one of six paddocks, roughly equal in size on a small farm. A similar pattern can be adapted to a range of landscapes and different sized properties.

paddock layout

In short, the design incorporates a belt of trees which are planted across the top of the paddock, with water across the base. As seen in the image above, the paddock is divided into smaller cells by utilising temporary electric fencing, the width and quantity based on the desired number of grazing divisions on the property.

FENCING DIVISIONS

The temporary fence is run straight up and down the slope. Although perceived as an erosion risk by many at first, due to stock tracking up and down the slope, the short presence of animals and significant pasture rest & recovery offered by a time-controlled grazing approach means that this problem is largely avoided. On the contrary, significant benefits are offered by taking such an approach as outlined further down.

There are many options for electric fencing. The following end assembly of David Marsh’s is a simple  and cheap option for permanent electric fencing and KiwiTech fencing is the most elegant version of temporary fencing I’ve come across, allowing rapid assembly and disassembly while on a quad bike.

equ end assembly

Simple and cheap end assembly for permanent electric fencing. Design & Image: David Marsh

Kiwitech catalogue

WATER PLACEMENT

Dick Richardson has practiced Holistic Management grazing for almost as long as anyone and was one of the people credited in the original Holistic Management Handbook when they were detailing the how to’s. Dick, who comes from South Africa, now manages Hanamino, the Carbon Cocky award winning property of Charlie Arnott near Boorowa.

A few years ago, he told me that he was going to the effort of moving troughs from the top of the paddocks to the bottom. His reasoning was that although he understood the thought process behind why someone would put the water at the top of a paddock (to get nutrient in the form of dung transported to the highest point), it goes against the animal’s instincts. If you watch the cattle when they enter a new paddock, the highest point is often the last place they will look for water, meaning they are wasting effort and getting stressed, all of which affects production. Placing water where they expect to find it can pay dividends.

There are many options for portable water, but once again you can’t go too far past the consummate professional David Marsh.

water infrastructure

Left: Trough on skids, towed easily behind the 4 wheeler. Right: Quick couplings for emptying trough and connecting main line. Large diameter feed-pipe allows a smaller volume trough to be utilised resulting in less wastage and an easier time when shifting. Images: David Marsh

NUTRIENT CYCLING

Through the Millennia, there has been a common behavioural pattern in the wild herd: the open meadow offers sustenance and hydration, while the wooded hills offer a sheltered camp with a wide view, important for the ever hunted.

cattle under trees

By mimicking natural patterns, there are often advantages to be gained. Animal impact and pasture recovery offered by an Holistic Management grazing approach is a classic example. The age old pattern mentioned above, of drinking and feeding on the low ground and camping on the high ground is another which can be harnessed.

Gravity is one of entropy’s playing partners. The flowing path of water is the means by which the land is slowly eroded into the ocean. Life systems do their best to slow this process, and in the case of the herbivore, it sets gravity’s goal back a step or two.

Laden with a gut-full of food and water, the ruminant tramps up the hill seeking the afternoon shade. Arising after its rest, a parcel and a squirt of goodness are deposited on the ground, ensuring the ongoing health of the landscape below.

Although it’s on a smaller scale, the grazing strips running up and down the slope, with water at the base and woodland at the top, allow this timeless and fertility-renewing pattern to take place once again.

nutrient cycling

Single cell movement

Left: Stock feeding in the open paddock in the morning. Right: Lounging in the shade in the afternoon, transporting nutrients uphill.

A reconnection of valley floor to hilltop is one of the processes which both Paul Newell and Peter Andrews consider important, and has been implemented for that reason by Soils For Life Case Study participant Martin Royds.

PLANTING DENSITY & LAYOUT

The chosen tree planting density is another aim to mimic successful natural processes, in this case the grassy woodlands which existed in abundance at the time of Euro settlement. By many early explorers’ accounts, both pasture and soil were in excellent condition at the time.

Planting pattern2

Planting Pattern: (Click for a larger view)

Inspirational tree-planting grazier John Weatherstone of Lyndfield Park, has an entire paddock of Gleditsia triacanthos (Honey Locust) planted in this exact spacing (trees @ 7m, rows @ 14m).

HL & cattle 2

From a production perspective, this layout enables the trees to be separated from stock using a (semi) permanent electric fence, while the inter row can be cropped for the period of time that stock are excluded, making productive use of that land. When applied to sloping country, a keyline layout provides equidistant rows while also offering water harvesting benefits.

25 years after planting that paddock, John says, “It’s the best pasture on the property. Even if they didn’t produce any pods (the Honey Locust), if I could have every paddock planted out like that I would.”

HL & cattle 1

This statement is a result of John observing that highly palatable C3 grasses can benefit greatly from the dappled shade provided by the Gleditsia, staying greener for longer into the summer. Studies in the Southern Tablelands have shown that native pasture can also increase production when provided with shade.

Couple the pasture benefits with the fact that the trees offer shade and shelter to stock, thereby reducing stress and increasing production potential, as well as the multiple benefits offered by Gledisia (see below) and you can start to understand John’s glowing endorsement.

SPECIES

In this example, Gleditsia triacanthos inermis (Thornless honey locust) makes up 3/4 of the stand, while appropriate indigenous woodland species the rest.

The honey locust can provide multiple livestock and landscape benefits. Examples from the Lyndfield Park Story include:

  • Serve as a fire retardant
  • Deep rooted and are drought tolerant
  • Produce nutritious pods for stock fodder (up to 100km per mature tree per season. These pods have a nutritive value equal to oats grain or quality pasture and are produced with no extra costs once the trees are established)
  • Produce foliage which is also palatable to stock
  • Reduce the amount of water reaching the water table (thereby helping fight dry land salinity)
  • Provides dappled shade (see background) which maintains lush pasture longer into the summer
  • Suited to the open conditions of a woodland setting and allows pasture growth right up to the trunk
  • Late to leaf out and early to drop, maximising winter sun to C3 grasses beneath
  • Recycle nutrients (which had leached below the root zone of pasture plants, these are recycled back onto the soil surface through the foliage and pods)
  • Slow the increase in soil acidity
  • Produce timber (a dense hardwood with a number of uses)
  • Produce excellent honey
  • Enhance the view (it’s an attractive tree that is green in summer, turning gold in autumn)
  • Cycle deep nutrients which are returned to the surface as leaf litter

A word of warning on Gleditsia triacanthos: Honey Locust are a listed noxious weed in Queensland and in a climate that is more favourable than the Southern Tablelands, there is significant woody weed potential. If planted from seed, they will usually develop sharp 25mm thorns which can go through tyres. To avoid this situation, and ensure that each tree produces a significant quantity of nutritious pods, trees should be budded with material from a heavy bearing thornless variety (see below). 1 in 10 should be a male tree to ensure good pod set.

Budding Gleditsia

Budding seedlings using material from heavy bearing thornless varieties is essential to avoid tyre puncturing thorns in the paddock.

By including a portion of appropriate indigenous woodland species, this offers long term benefits to native biodiversity, with the associated benefits to production. (To avoid further pollution of successful genetics, aim to source seed from the local winners of the region.)

If you’re interested in design assistance for your property, feel free to get in touch

Disclaimer: While the information and images we publish are formulated in good faith, the contents do not take into account all the social, environmental and regulatory factors which need to be considered before putting that information into practice.  Accordingly, no person should rely on anything contained within as a substitute for specific professional advice.

You can subscribe to this site or visit and ‘Like’ our Facebook page to hear about future posts.

Article and Images © Cam Wilson, Earth Integral, 2013

Advertisements

Weeping Willow

“I believe that the presence of willows along streams in agricultural zones can be shown to be almost universally preferable to cleared streams in those zones. I would also suggest that even relatively low-disturbance eucalypt-Acacia dominated riparian vegetation may not have compelling benefits over willows under many circumstances.” (Wilson, 2007)

It would be fair to presume the comment above had been made by Peter Andrews, Natural Sequence Farming originator and outspoken champion for the much maligned willow. In fact, this statement came from Dr Michael Wilson, a stream ecologist who supervised numerous PhD and Masters research projects in Ballarat, Victoria, during the early 2000s, comparing streams flanked by willows; 100 year old, multi-strata, native regrowth, and cleared land with introduced pasture.

The full paper which is linked to at the bottom of this article goes into more detail, but here’s a summary from Wilson (2007) to give you the gist:

– On average, willow-lined streams had a higher retention of sediment (187t more/km) and organic matter (30t more/km) than the native forest.

– “Willow-mediated aggradation in these channels is converting them from incised channels to in-fill channels that are more characteristic of pre-European conditions”.

Litterfall of willow and native-reveg reaches had a similar annual distribution pattern due to the not-so-well-known summer dominant leaf drop habit of many Eucalypts.

– The annual weight of leaves, twigs, bark and flowers was very similar at the willow and native sites.

– With similar annual litterfall amount and distribution, coupled with dense shade patterns in the seasons of maximum productivity, the overall metabolism (and resulting biological oxygen demand) was also very similar.

– Root mats of willows were found to provide beneficial habitat to native fish in the absence of large woody debris.

– There was a disproportionately large association between pool-riffle sequences and willows, formed by the root mats of the willows.

“Pool-riffle sequences are extremely valuable habitat and for that reason alone it is worthwhile (maintaining willows). But it becomes even more valuable when it can contribute to ideas focused on restoring the whole of the floodplain complex in agricultural landscapes.”

“In all the streams we have studied, clearing willows will mobilise sediment, nutrients and organic matter, will make heterotrophic streams more autotrophic, will threaten habitat values for invertebrates and fish and will threaten pool-riffle sequences. Native vegetation planted where willows are cleared will take many decades if not hundreds of years to mature, for the canopy to close over and for significant limb fall to occur.”

View the full article:

Click here to view the full article, Willows: Weeds of Retention 

Wilson, M., 2007. Willows: Weeds of Retention. Proceedings of the 1st Natural Sequence Farming Workshop. ‘Natural Sequence Farming: Defining the Science and the Practice’, Hazell, Peter and Norris, Duane, Bungendore, NSW,  2007. http://www.nsfarming.com/workshop/

For those who haven’t seen it, the following is a series of You-tube clips with Peter Andrews interviewed quite skilfully by Martin Royds at Baramul Stud. These clips, put together in 2007 by Paul Cochrane and the Natural Sequence Association, are one of the best overviews of Peter’s observations and hypothesis.  

Peter Andrews and Martin Royds discuss a leaky weir at the Natural Sequence Farming demonstration at Barramul Stud

Peter Andrews and Martin Royds discuss a leaky weir at the Natural Sequence Farming demonstration at Barramul Stud

(The following clips are placed in the same sequence as they appeared on the original DVD)

Peter Andrews at Baramul Stud – Introduction

Peter Andrews at Baramul Stud – Rock Walls

Peter Andrews at Baramul Stud – Weeds Pt1

Peter Andrews at Baramul Stud – Weeds Pt2

Peter Andrews at Baramul Stud – Deenergise

Peter Andrews at Baramul Stud – Floodplains

Peter Andrews at Baramul Stud – Wetlands 1

Peter Andrews at Baramul Stud – Wetlands 2

Peter Andrews at Baramul Stud – Tall Plants

Peter Andrews at Baramul Stud – Runnels

Peter Andrews at Baramul Stud – End of the flow

Peter Andrews at Baramul Stud – Erosion

Gravity’s always doing its best to take your fertility to the bottom of the hill. The following images explore a couple of ways to reverse this ever-present process, hopefully bringing a more positive slant to the old saying, “Pushing faecal matter uphill”.

This is a floodplain at Baramul stud, hydrated by the Natural Sequence Farming work completed by Peter Andrews. The pasture in the foreground is obviously lush and will provide some very decent feed, however, the tan coloured biomass in the background is equally interesting

This photo was taken standing on the back of a ute which Peter directed straight through this stand of Phragmites. The scale shows the considerable biomass produced as a result of the landscape hydration

Peter had said to me on many occasions that reeds make the best compost. So one day I gave it a go and what do you know, it did (and I’ve made my fair share). This was mainly cumbungi, but I’ve had similar results with Phragmites too.

A forage harvester, baling or in the gut of a cow are a few ways of moving the material up the landscape so that the compost is useful, as Peter Andrews mentions when talking about mulch farming in Back from the Brink.

Another plant that’s synonymous with water are willows, and the more fertile it is the better they grow.

Drop a willow near stock and see what happens. Sheep will strip every bit of bark off, as they have here on Peter and Kate Marshall’s property. Their sheep come to the sound of a chainsaw, as did the stock of a few people I have met, especially during the drought. That’s the time it’s valuable and research by the Kiwis has shown that with protein levels similar to lucerne, poplar and willow can maintain lambing rates during drought periods.

Because you’re close to water, the woody material which might otherwise get in the way can be used to fill in gullies and build more fascines and brush mattresses for erosion control.

With a feed value comparable to lucerne, poplars are another tree that grow on well-hydrated land, which stock will devour. The bark is especially high in trace minerals which are mined from deep down.

There are many varieties of poplars which can be used for different purposes, Populus trichocarpa being one which also provides useful timber.

Populus alba (silver poplar) is another, this stand provides good windbreak even when dormant, while the upright form minimises shading of pasture.

Pasture grows right up to the base of most poplars. The nutrients mined from deep down by the poplars are returned to the surface via leaf drop, enriching the soil beneath.

Browse blocks are utilised by the Kiwis which if grazed often enough don’t require felling with the chainsaw.

Using a number of tyres tech-screwed together, the Marshalls are able to establish poplars while the stock are still in the paddock. A large piece of cardboard eliminates grass competition during establishment. Tyres are removed when the tree is first pollarded.

Another use for a well hydrated floodplain is cricket bat willows. These ones are inoculated with white truffle, hence the oyster shells as a free, slow-release source of calcium.

Bamboo is another plant which does a fantastic job at stitching creek banks together, the foliage providing good fodder while the poles have a huge range of uses, one of which is a good cellular structure for biochar production.

And where do the stock head when they’ve got a gut full of all this? Up the hill of course, Nature’s anti-gravity nutrient transport service. Recognising this pattern, Martin Royds has realigned his fencing to facilitate this nutrient connection between watercourse (filter zone) and hilltop.

Please visit and ‘Like’ our Facebook page to hear about future posts.

Disclaimer: Where water flow is concerned there are substantial risks involved. While the information and images we publish are formulated in good faith, with the intention of raising awareness of landscape rehydration processes, the contents do not take into account all the social, environmental and regulatory factors which need to be considered before putting that information into practice.  Accordingly, no person should rely on anything contained within as a substitute for specific professional advice.

Article and Images © Campbell Wilson, Earth Integral, 2012

When building natural capital (including beef or wool), increased potosynthesis is the goal of any land manager. Available moisture is, of course, a key factor.

At the time Europeans settled in South-Eastern Australia, many broad upland valleys were described as chains of ponds or swampy meadows. There are a few of these well hydrated, very productive systems, effectively drought proof systems still remaining (for example the Hazell’s property), but the majority have been severely eroded and subsequently drained (click on the following for an outline of the degradation process, in diagrams or the scientific literature).

At Tarwyn Park, Peter Andrews demonstrated the potential primary production benefits from reinstating the original floodplain processes and rehydrating the surrounding landscape.

One way of doing so is by raising the alluvial water table through lateral infiltration (as described in the post Floodplain water storage). The speed this occurs depends on the soil type, but if it’s going to happen any time soon the main driving factor is a fairly constant supply of water from the catchment above.

High in the landscape, inflow from the catchment above is generally only available for a short period of time. Where this is the case, the effectiveness of relying solely on a lateral hydration approach is limited, as a severely drained landscape will take a considerable time (maybe several lifetimes) before the water table is raised high enough to enhance plant growth on the floodplain.

Where short sharp bursts of runoff are available, the fastest return can be achieved by reinstating the old flood flows. Water spreads out across the landscape once more, soaking into the floodplain for the extended use by the plants and soil life. Sediments are also deposited, the process which has made floodplains the rich production zones they are worldwide. Basically, it’s recommissioning nature’s flood fertigation system.

In an intact landscape, there are predictable locations where floodwater is more likely to top the banks, just as there are locations where it’s likely to re-enter:

On a macro-scale, floodplain flow patterns are often closely related to the ridges intruding into the floodplain (Tane, 1999)

Where multiple ponds exist between the major landscape features, braided flood flows (red arrows) generally exit the downstream half and enter the upstream half of a pond (P Hazell, personal conversation)

When siting structures, an understanding of these processes is the key to getting the most bang for your buck. A structure in an inappropriate location may get the water up onto the floodplain, but it will soon spill back into the gully, maybe even worsening the existing erosion. In contrast, a well positioned structure results in the flow heading away from the watercourse, spreading into a more passive flow and hydrating the floodplain surface before re-entering the stream sometimes hundreds of metres downstream.

On Gunningrah, Charlie and Anne Maslin have sited their structures as well as anyone I’ve seen with this goal in mind. Having taken inspiration from Peter Andrews on ‘Australian Story’ and attending a Natural Sequence Farming field day, Charlie has since constructed around 40 leaky weirs on Gunningrah (For more information about the Maslin’s farming prowess, see their profile in the Soils for life case studies).

There are a range of positive results which the Maslins have achieved depending on the landscape position of the works, but the following couple of examples are a good demonstration of utilising the original flooding processes mentioned above.

(Note: To avoid hefty fines, it’s important to adhere to local watercourse regulations. In many places there are few restrictions on ‘dam walls’ within first and second order streams other than the harvestable rights of the property)

Poplar site

Flow had become contained within the incised channel, taking shortest path it could towards the ocean. The only moisture available to the surrounding floodplain was what fell from the sky

An earth wall structure intercepts the flow in the channel, reconnecting it with the floodplain. The flow re-enters more than 500m downstream, with the potential to irrigate about 6 ha of pasture.

The poplars indicate the path of the incised channel, the flow now spreads out across the floodplain

Looking upstream at the same structure, the flow spreads significantly across the paddock.

Debris in the middle of the paddock, around 50m from the main channel.

Hayshed site

Flow path before the works….

….. and afterwards, back to how it once was

An aerial view of the flow before the works were completed, contained within the incised channel

An earth wall intercepts the channelised flow, spilling onto the surrounding floodplain. For an idea of the extra water harvesting potential which results, 0.25 Megalitre is stored for every 25mm of water that’s accepted by the landscape per hectare. A healthy topsoil can receive far more than that.

In case you’re still wondering “How can water flow away from the main watercourse? Isn’t that always the lowest point?” It is in a young landscape, but Australia’s pretty geriatric as far as watersheds go.

In Back from the brink, Peter Andrews talks about water flowing on the high ground (of the floodplain). This phenomena was observed by plenty of early explorers and it’s also well accepted in the scientific literature. In short, when a watercourse spills its banks, the water slows down, depositing the heaviest sediment. In time, a natural levee is built as seen below.

If you’re interested in getting these processes happening once again on your land, contact us to find out about our design, consultancy and implementation services.

Please visit and ‘Like’ our Facebook page to hear about future posts.

Disclaimer: Where water flow is concerned there are substantial risks involved. While the information and images we publish are formulated in good faith, with the intention of raising awareness of landscape rehydration processes, the contents do not take into account all the social, environmental and regulatory factors which need to be considered before putting that information into practice.  Accordingly, no person should rely on anything contained within as a substitute for specific professional advice.

Article and Images © Cam Wilson, Earth Integral, 2012

References

Tane, H. 1999. Catchment Habitats and Landscape Ecosystems. Centre for Catchment Ecology, 1: 1-12

Peter Hazell showing the intact chain of ponds, on the property he is stewarding near Braidwood.

“One thing I noted was the striking difference in the primary productivity between the swampy meadows and the incised equivalent: it was chalk and cheese.” That’s Peter Hazell’s take on the first time he laid eyes on the property he and his wife Donna are now managing.

At the time, back in 2001, as a seasoned NRM scientist, Peter was conducting a land cover classification for the Landcare network. Using satellite imagery, different land cover types would show up as different patterns in the spectral analysis, and Peter would then head out into the field to ground truth it.

While doing so, there were areas in the upper catchment that were standing out as very vibrant so he thought he’d better take a look. It turned out that every place that was showing up as the richest land cover class in terms of primary production were the intact swampy meadows and chain of pond systems. In contrast, the drained, incised systems showed up as rather dull, with low production.

As well as stewarding one of the rare intact chain of pond systems that remains, Peter’s contribution to protecting and restoring these valuable environmental assets has included working closely with Peter Andrews while working as an NRM Facilitator with the Federal Department of Environment Water Heritage and the Arts, playing an instrumental role in getting the Natural Sequence Farming demonstration to happen at Mulloon Creek Natural Farms, involvement in the Upper Shoalhaven Natural Sequence Association, and potentially more research down the track.

Meanwhile, in 2003, Donna published what remains one of the only peer reviewed papers looking at the ecology of chain of pond systems, in particular the benefits of intact systems to frogs within an agricultural landscape. It’s a great paper and in my opinion remains one of the clearest overviews of the post-Euro settlement stream degradation process (you can access a copy here).

As a great example of the landscape hydration, leaky weirs, wetland habitat and natural erosion control we’re aiming to reinstate, I’ll share more about their property in future. This will include some interesting saline groundwater results, the way water pulses through the floodplain sediments, and some very simple small-scale erosion control which can be done, like Peter and Donna have, in your spare time with a couple of kids in tow.

When the results become public, I’ll also share more about the research which Nathan Weber has conducted on the Hazell’s property as part of his PhD on the effects of Natural Sequence Farming on upper catchment floodplain processes.

Article and Diagrams © Cam Wilson, Earth Integral, 2012

I don’t pretend in any way to have originated the concepts that I design and implement in the landscape, nor what I share on this blog. No one can really, as the intention is to emulate natural processes to the best of our understanding.

There are however a number of pioneers who can lay a bit more claim than most. Those pioneers I refer to are the ones who have stepped outside of the entrenched European farming paradigm and realised that the tried and tested patterns in Nature provide a solid template for design and practice. They’ve then pointed them out to the rest of us, and in doing so, have turned many of our paradigms upside down and put a fire in our belly for helping landscape rehabilitation to take place.

Peter Andrews (Source: Australian Story, ABC)

Peter Andrews is one of those pioneers. Since he shot to fame with the original Australian Story episode in 2005, he has arguably opened the eyes of more Australian mainstream farmers to the possibilities that natural processes present than anyone else. That episode, in which his efforts to restore a degraded system back to a rehydrated, functioning chain of ponds landscape, captured the imagination of both city and country folk alike, and proved to be the most popular episode ever.

In 2009 there was a follow up double episode called Right as Rain which can be viewed on the abc website (Click on the following links to see Part 1 and Part 2).

It wasn’t long after those episodes that I went to Mulloon Creek for the first time, along with a couple of hundred others for the open day of the Natural Sequence Farming demonstration. Pretty soon after that, that my family and I were living at Mulloon where I maintained the creek work for a couple of years. During that time, I’ve been lucky enough to spend a fair bit of time with Peter and whilst most of what he’s shared with me can be found in the pages of Back from the Brink and Beyond the Brink (essential reading of course), he has managed to put me on the spot plenty of times, testing and extending my thinking and understanding which I very much appreciate (although slightly challenging when it’s up on stage in front of 150 or so people).

The point of our blog and our business is that resting on the shoulders of giants (whose work we will be profiling and exposing on a regular basis) we hope to make these ideas even more accessible and achievable. We hope to remove the blocks that have prevented all but the most courageous pioneering types from undertaking this sort of work, helping to point out the pathway through the design and implementation process, as well as the wide room for movement within the current regulation framework (there is a common perception that everything Peter has suggested is illegal, but it just isn’t the case).

I see huge value from the position of landscape health in what Peter Andrews and other pioneers have shared and contributed. One of my hopes is to further clarify some of their ideas on this website through diagrams, writing and sharing case studies of those who have been inspired enough by his work to have a go on their land.

The purpose of our business is to help people to take that next step. Through our design, consultancy, implementation and education services we hope to place the tools in peoples hands for carrying out this incredibly important landscape rehabilitation work. For the health of the Aussie landscape, we hope you’ll be one of them.

We hope that on our journey we can make a contribution that is even a small portion of what Peter has done over the years in his tireless efforts of raising awareness about the processes in the Australian landscape.

On Jan 26th 2011 Peter Andrews was awarded Australia’s highest public award, the Order of Australia Medal. (Source: www.nsfarming.com)